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THE LAPLACE-BELTRAMI OPERATOR
ON RANK ONE SEMISIMPLE SYMMETRIC
SPACES IN POLAR COORDINATES !

A. A. Artemov, V. F. Molchanov
G. R. Derzhavin Tambov State University, Russia

Let X = G/H be a semisimple symmetric space of rank one. The algebra of G-invariant
differential operators on X is generated by the Laplace-Beltrami operator A corresponding to
a G-invariant metric. It is very important (for many purposes) to know explicit expressions of
A in various coordinate systems. For example, polar coordinates associated with the Cartan-
Berger decomposition G = HAK (for definitions, see Section 1) are necessary for the study of
canonical and boundary representations, for the study of Poisson and Fourier transforms etc.

But, as we know, explicit expressions of A in polar coordinates are written in particular
cases only.

For Riemannian (noncompact) symmetric space of rank one X = G/ K, the Laplace-Beltrami
operator in polar coordinates has the form (see, for example, [4]):

10 0
A=——A—+1Lg.
Aor or s

Here r is the distance between a point £ € X and the initial point z°, S the sphere in X with

center z° and radius r, the area A of S is given by
A=C- {sinh(cr)}n{sinh(2c7")}r2

where ¢ is a number (written explicitly), r1, 7o are multiplicities of roots ¢, 2«, respectively,
and, finally, Lg is the Laplace-Beltrami operator on S.

For real hyperbolic spaces (hyperboloids) X = G/H, where G = SOq(p, q), H = SOy(p, ¢—1),
the Laplace-Beltrami operator in polar coordinates is written as follows (see, for example, [1]).
The hyperboloid X is a manifold in R", n = p + ¢, defined by equation

—zi— -2l +. i =1

Let spheres S; C RP and S C RY are defined by equations u +. . .—|~uf7 =1land v?+.. .+v3 =1,
respectively. Polar coordinates ¢,u,v (t € R, u € S1, v € S2) in A are introduced by

z = (sinh ¢ - u, cosh t - v).
Then

10,0 A
T v dt Ot sinh®t cosh®t’

where
v = | sinh #[P~(cosh ¢)77,

A1, Ay the Laplace-Beltrami operators on S1, Sg, respectively.
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A similar formula for A is true for hyperbolic spaces over complex numbers and octonions,
see, for example, [3].

For arbitrary semisimple symmetric spaces X = G/H of rank one, the Laplace-Beltrami

operator in polar coordinates t, s, where t € R, s € S (for S, see Section 2 below) was written

in [5]:
18 0
1wtm+zw

where the function v = v(t) is given by formula (2.14) below, v;(t) are some functions, D; are
some differential operators on S invariant with respect to K. But [5] does not contain explicit
expressions of v; and D;. Apparently, such expressions seem to be rather complicated.

We succeeded in the obtaining explicit expressions of A in polar coordinates for all X — at
points in a Cartan subset (i.e. points whose angular coordinates are equal to zero), see Theorem
2.1.

Notice that for para-Hermitian symmetric spaces of rank one, an explicit formula of A in
horospherical coordinates is written in {2].

§1. Semisimple symmetric spaces of rank one

In this Section we recall some material from [5].

Let X = G/H be a semisimple symmetric space. It means that G is a connected semisimple
Lie group, there is an involution o(# 1) of G such that H is an open subgroup in the subgroup
G of all points in G fixed under o. We shall assume that G acts on A’ from the right and shall
denote by R(g) : z — zg the translation of X by g. Let us write z° for the initial point {H} of
X.

Let g and § be the Lie algebras of G and H respectively. The involution o of G gives rise to
an involution o of g (we use the same symbol). The algebra g can be written as the direct sum:

g=h+q

of 41, —1-eigenspaces of ¢. The commutation relations are:

[h,b] C b, [h,9] Cq, [9,9] Ch.

The space q can be identified with the tangent space of X' at z°.
There exists a Cartan involution 7 of g which commutes with . The algebra g decomposes
into the direct sum of +1, —1-eigenspaces for 7:

g=t+p,
here ¢ is a subalgebra of g. The commutation relations are:

[eECt [EplCh, [pplCE
There is a joint decomposition:
=¢tNh+eNg+pNh+pnag.

All these decompositions are orthogonal with respect to the Killing form By of g.

We assume that p # 0 and pNh # 0, i. e. that g and § are non-compact (excluding in this
way the Riemannian case). Then pNq # 0, ENqg # 0.

From now on we assume that the rank of & is equal to 1. It means that the dimension of any
Cartan subspace of q (a maximal Abelian subalgebra of g consisting of semisimple elements) is
equal to 1. Fix such a subspace a lying in pNq.
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Let A = exp a. The centralizer of the subgroup A in G is the product AM of two subgroups
A and M whose intersection is the identity element e of G. The subgroup M is closed and
reductive.

The algebra a is splitted in g. The corresponding root decomposition is:

g=9-2¢ +8—a+ 80+ 8a + 920,

where the root « is an element of a*. The subspaces gio, may sometimes be absent. The
involutions o and 7 give isomorphisms gjo — g—ja, J = 0, £1,£2. Let us denote:

Ty = dim Gja = dim F—jar j = 1,2,

r=147r+7o.
Set
q; = (1 = 0)gja, hj = (1 +0)gja, j=1,2.

Then dimg; = dimh; = r;, the spaces q and h decompose into the direct orthogonal (with
respect to the Killing form) sums:

g=a+4q1+qz2, h=m+h + b,

where m = go Nk, so that go = a +m. Therefore, dimq = r. The algebra m is the Lie algebra of
M.
Fix a basis element Ay € a so that

a(Ag) = 1.
Then adAg - X = £5X for X € g+ja, 7 =0,1,2. Let us denote:
a; = exp tAp. (1.1)

It is more convenient for us to consider, instead of the Killing form B, , the proportional form
(X,Y) normalized by the condition
(AO) AO) =1

Recall, that the signature of a non-degenerate quadratic form on a vector space is the pair
(p, q) indicating the number of plus and minus signs in a canonical expression of this form.

Denote the signatures of the form (, ) on q and q; by (r*,r~) and (rf,rj‘) respectively
( =1,2). On a its signature is (1,0). Therefore,

rt=14rf+rd, v =0 +r;.

The signatures of (, ) on b; are (r]-_,rj .
The operator adAg gives an isomorphism of q; onto h; and conversely and vanishes on
go = a+ m. The subspaces q; and b; are eigenspaces for (adAg)? with eigenvalues j2. In

particular, it implies the following.

Lemma 1.1. Let X € q;, j = 1,2. Then the element Y = (1/j)adAo - X belongs to b; and
the operator adAg transforms the elements X,Y by the matrix:

(53);

so that in this basis X,Y the operator Ad a; has the matrix

coshjt sinhjt
sinhjt coshjt /-
352



Bectnuk TT'Y, T.10, BoimL4, 2005

The same is true for X € b, then Y € q;.
Let P denote the orthogonal projection operator in g onto gq; + q2. Lemma 1.1 gives:

Lemma 1.2. If X € q;, then
P(Ada; - X) = coshjt - X,

and if X € b;, then
1
P(Ada;- X) = j sinhjt - adAg - X.

Let K be the Lie subgroup of G with Lie algebra . Then K is connected, closed and contains
the centre of G. The involution 7 can be lifted to G so that K = G". The group K is compact
if and only if the centre of G is finite. Then K is a maximal compact subgroup of G.

§ 2. The Laplace-Beltrami operator

The bilinear form (, ) on q gives rise to a G-invariant metric @ on X
ong(dR(g)a:OLa dR(g)xOM) = (L’M> (2'1)

where L, M € q. Let A be the Laplace-Beltrami operator on X generated by this metric. Let us
recall that the Laplace-Beltrami operator A on a manifold generated by a metric ) g;;(x)dz;dz;

is defined as follows: . 5 9
- E i § N 2.2
A 7 : 8z, i g \/E o7; (2.2)

where (g*/) is the inverse matrix of (g;;) and g = |det(g;;)|.
Let us introduce a system of polar coordinates on & — by means of the Cartan-Berger
decomposition G = HAK. This decomposition gives that any z € A can be written in the form

z = 2%ak, (2.3)

where a; is given by (1.1) and &k € K. If ¢t # 0, then the element & in (2.3) is defined up to
the multiplication from the left by elements in K N H N M, so that the manifold A x S, where
S =K/KNHNM, is mapped in the natural way onto X. The tangent space to S at the initial
point can be identified with the direct sum of spaces

ENhy, ENgy, €ENhy, ENgo. (2.4)

Let us take orthogonal bases X;, (X;, X;) = —1, in these spaces, here 1 < ¢ < rf, r;“ +1<e<
r, m+i<ig<r+ T;, T+ 7‘;' +1<gi<<r+ry=r—1, respectively. We introduce local
coordinates t,uy,...,ur~1 on X (polar coordinates) by

z = z'g, (2.5)
where
r—1
9=ay epouiXi. (2.6)
=1
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Theorem 2.1. At points z = z%a; the Laplace-Beltrami operator A reads:
9? g

A= % + (r{ cotht + r] tanht + 273 coth2t + 2r2_tanh2t)é—t+

S S B |

— + — A ,
sinh®t ' cosh?t ' ' sinh?2t 2  cosh?2t 2

where AT, A7, Af, A7 are the usual Laplace operators (3 8 /0u?) in spaces (2.4) respectively.

The theorem implies from the following two lemmas.

Lemma 2.2. In the coordinates t,uy, ..., 4,1 the metric QQ, has the form

Qe = dt® + ) bij(t, u)dusduy, (2.7)
with
91 =0 (2.8)
B’LLZ' u=0 mm ’
bim|ymg =0, L#m. (2.9)

Proof. Let us consider tangent vectors

9.9 9
6t’ aul""’ 3u7-_1

at a point £ given by (2.5), (2.6). By (2.1), they are the images of some vectors T, Uy, ..., Ur—;
in q under the map dR(g),0. Clearly that T' = Ay, i.e.

0
Fri dR(9)40Ag.
Let us determine U, € q. Let y(u) be a curve in G such that v(0) = e and v/(0) = Up,. Then
the following condition has to be satisfied:

z%y(n)g = 2"aexp (HXm + Z UiXi>-
From here and (2.6) we have

x07(u) = xoatexp (uXm + ZuiXi)exp( - Zule) at-l.

Let us apply to the product of these exponents the Taylor expansion of the product in canonical
(logarithmic) coordinates up to the order two and differentiate the obtained equality with respect
to u at 4 = 0. Then we obtain:

Um:P(Adat-{Xm——%Zu,-[Xm,Xi]-i-...}), (2.10)
i#m
where dots mean terms of the order greater than one in u;.

Since the vectors X; belong to spaces (2.4), the vector Uy, lies in q; + qo. Therefore,
(Ao, Up) = 0 and Q,(9/0t,8/0um) = 0. It proves (2.7).

In order to prove (2.8) we have to show that linear terms (in u;) in (Up,, Up,) vanish. We use
Lemma 1.2. It follows from (2.10) that the linear function u; enters (Uy,,U,,) with a coefficient
that is the product of

(X, [Xm, Xi]) or (adAg - Xm, [Xm, Xi]) (2.11)
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and a function of ¢. Both inner products in (2.11) are equal to zero: the first one is equal to
([Xm, Xm], X;) = 0, the second one vanishes because adAg - X,, belongs to pNq and is orthogonal
to [Xm,Xz] €t

Finally, let us prove (2.9). For that, we have to show that (U;,U,) = 0 when [ # m and
v = 0. From (2.10) we have for u = 0:

(U, U) = (P(Aday - X)), P(Adat - X)) (2.12)
The right hand side is equal to (X;, X;n) or (AdAg - X;, Xas) with a coefficient depending on ¢.

If I # m, then these inner products are equal to zero: the first one because of orthogonality of
the bases X, the second one because ad4d¢- X; €pNq and X,, €& O

v = y/ldet(by)]

Lemma 2.3. At points x = 2%a;, t # 0, the metric Q, has the form

Denote

Q. = dt* + sinh?t - Z du? — cosh®t - Z du? + sinh?2t - Z du? — cosh?2t - Z du?,  (2.13)
where i ranges sets mentioned above, so that

v= (cosht)rf - |sinht|™1 - (cosh2t)T3L - |sinh2¢|"2 . (2.14)

Proof. It follows from (2.9) that the matrix (b;;) at z%a, is diagonal. By (2.12), a diagonal
entry b, is equal to

(U, Un) = (P(Aday - Xp,), P(Ada;- X))
Let X,, € ¥N g, then by Lemma 2.2, P(Ada; - X;) = coshjt - Xy, so that
(Upny Um) = —cosh?jt.

Let X,, € €N b;, then P(Ada; - X,,) = sinhjt - (1/5)adAg - Xy, so that
1
(U, Up) = _—QSinh2jt- (adAg - X, adAg - X)) = —sinh?jit - (X, X,,) = sinh?j¢.
J
It proves (2.13) and, therefore, (2.14). O

Now we can finish the proof of Theorem 2.1.
Let (b”) be the inverse matrix of (b;;). It follows from (2.8) and (2.9) that

o by = 0.
Ou,

u=0

Therefore, by (2.2), we have at points = = z%a;:

_10,0 10
T wot Ot bii Ou?’

It remains to substitute values of v and b;; at 1%ay, see (2.13), (2.14).
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